
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-470/570: Microprocessor-Based System Design  Fall 2014 

 

 

1 Instructor: Daniel Llamocca 

Notes - Unit 12 
 

INTRODUCTION TO CONTROLLER AREA NETWORK (CAN) 
 
 The Controller Area Network (CAN) protocol was developed in the mid-1980s by Bosch GmbH, to provide a robust, cost-

effective communications bus for automotive applications. 
 We cover the version 2.0b of the CAN standard, as described in “R. Bosch. CAN specification, v. 2.0, Stuttgart, 1991”. 
 

OVERVIEW OF CAN 

 The CAN specification, as developed by R. Bosch GmbH covers only the Physical and Data Link Layers. 
 

PHYSICAL LAYER: 
 In the Bosch CAN 2.0b standard, the description is limited to the definition of the bit timing, bit encoding, and synchronization.  
 The Bosch CAN 2.0b standard does not specify the physical transmission medium, the acceptable (current/voltage) signal 

levels, the connectors, and other characteristics of the driver/receiver stages and the physical wiring. The system designer 
can choose from multiple available media technologies including twister pair, single wire, optical fiber, radio frequency, 

infrared, etc. 
 
DATA LINK LAYER: 
It consists of the Logical Link Control (LLC) and the Medium Access Control (MAC) sub-layers. 
 LLC Sub-layer: It provides all the services for the transmission of a stream of bits from a source to a destination. In 

particular, it defines: message acceptance filtering, overload notification, and error recovery management. 
 MAC Sub-layer: It represents the kernel of the CAN protocol.  The MAC sub-layer is responsible for message framing, 

arbitration, acknowledgement, error detection, and signaling. For the purposes of fault containment and additional reliability, 
the MAC operations are supervised by a controller entity monitoring the error status and limiting the operations of a node if 
a possible permanent failure is detected. 

 
GENERAL CHARACTERISTICS: 
 The CAN protocol is optimized for systems that need to transmit and receive relatively small amounts of information. 
 Single channel: The bus consists of a single bidirectional channel that carries bits. From this data, resynchronization 

information can be derived. The channel implementation is not specified, it can be: single wire (plus ground), two differential 
wires, optical fibers, etc. 

 Bus values: The bus can have one of two complementary values: dominant (0) and recessive (1). During simultaneous 
transmission of dominant and recessive bits, the resulting bus value will be dominant. 

 Information Routing: A node does not make use of any information about the system configuration (e.g.: node 
addresses). This has several important consequences: 
 System flexibility: Nodes may be added to the CAN network without requiring any change in the software or hardware 

of any node or the Application Layer. 
 Message routing: The content of a message is described by an identifier. The identifier does not indicate the 

destination of the message, but rather the description of the meaning of the data, so that all nodes in the network are 
able to decide by Message Filtering whether the data is to be acted upon by them or not. 

 Multicast: As a consequence of the concept of Message filtering, any number of nodes may receive and act simultaneously 
upon the same message. 

 Data consistency: Within a CAN network, a message is guaranteed to be accepted simultaneously either by all nodes or 
by no node.  

 Arbitration: Whenever the bus is free, any node may start to transmit a message. If two or more nodes start transmitting 
messages at the same time, the bus access conflict is resolved by bit-wise arbitration using the identifier. The mechanism 
or arbitration guarantees that neither information nor time is lost. During arbitration, every transmitter compares the level 
of the bit transmitted with the level that is monitored on the bus. If these levels are equal, the node may continue to send. 
When a recessive bit (1) is sent, but a dominant bit (0) is monitored, the node has lost arbitration and must withdraw without 
sending any further bits. 

 Multi-master: When the bus is free any node may start to transmit a message. The node with the message of highest 
priority (determined by the identifier) to be transmitted gains bus access. 

 Error detection: To detect errors, the following measures have been taken: 
 Monitoring: Each transmitter compares the bit levels detected on the bus with the bit levels being transmitted. 
 Cyclic Redundancy Check (CRC): For every message, CRC is calculated and the checksum is appended to the message. 
 Bit-Stuffing: CAN is an asynchronous protocol (clock information embedded in the message rather than transmitted as a 

separate signal). A message including a long sequence of identical bits could cause a synchronization problem. Thus, the 
CAN protocol uses bit stuffing: every 5 identical bits, a complemented bit is included. 

 Fault confinement: CAN nodes are able to distinguish between short disturbances and permanent failures. Defective nodes 
are switched off.  



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-470/570: Microprocessor-Based System Design  Fall 2014 

 

 

2 Instructor: Daniel Llamocca 

CAN MESSAGE FORMAT 

 This is specified by the Data Link Layer. 
 In CAN, there are 4 different types of frame, according to their content and function: 

 Data Frames: They contain data information from a source to possibly multiple receiver 
 Remote Frames: They are used to request transmission of a corresponding (with the same identifier) Data Frame 
 Error Frames: They are transmitted whenever a node on the network detects an error. 
 Overload Frames: They are used for flow control, to request an additional time delay before the transmission of a Data 

Frame or Remote Frame. 
 Data frames and remote frames are separated from preceding frames by an interframe space. Applications do not need to 

send or handle error and overload frames. 
 
DATA FRAME 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Start of Frame Field: Single dominant bit that marks the beginning of the Data Frame (or Remote Frame). A node is 

allowed to start transmission only when the bus is idle. All nodes have to synchronize to the edge of the node that starts 
transmission first. 

 Arbitration Field: The format is different for the Standard Format and Extended Format frames. 
 Standard Format: The Arbitration Field consists of the 11 bit identifier followed by the RTR Bit.  
 Extended Format: The Arbitration Field consists of the 29 bit identifier, divided into Base identifier (11 bits) and extender 

identifier (18 bits). It also includes the SRR Bit, the IDE bit, and the RTR bit. 
 The identifier bits are transmitted with the MSB first. The most significant 7 bits cannot all be recessive (1). 
 RTR (Remote Transmission Request) Bit: It is dominant (0) in Data Frames. For a Remote Frame, it is recessive (1). 
 SRR (Substitute Remote Request) Bit: It is a recessive (1) bit. SRR occupies the position of RTR in the Standard Format. 

As a result, collisions between a Standard Frame and an Extended Frame (assuming Base IDs to be identical) are resolved 
in such a way that the standard frame prevails over the extended frame (this is because RTR=0 and SRR=1). 

 IDE (Identifier Extension) Bit: It belongs to the arbitration bit for extended format and to the control field for the standard 
format. The IDE is a dominant (0) bit for the standard format and a recessive (1) bit for the extended format. 

 Control Field: The Standard Format includes the IDE bit (dominant), the r0 bit (dominant), and the Data Length Code (4 
bits). The Extended Format includes r1 bit (dominant), r0 bit (dominant), and the Data Length Code (4 bits). 
 Data Length: It specifies the number of bytes (from 0: 0000 to 8: 1000) contained in the Data Field. 

 Data Field: This is the actual data. It may contain 0 to 8 bytes, where each byte is transferred with the MSB first. 
 CRC Field: Cyclic Redundancy Check. A 15-bit CRC check value is appended followed by a recessive bit (delimiter). 

 
A 𝑘 − 𝑏𝑖𝑡 message can be represented as: 𝑚𝑘−1𝑚𝑘−2 … 𝑚1𝑚0. The message consists of the de-stuffed Start-of-Frame, 

Arbitration, Control, and Data (if present) fields. The associated polynomial 𝑀(𝑥) (of order 𝑘 − 1) is given by: 
𝑀(𝑥) = 𝑚𝑘−1𝑋𝑘−1 + 𝑚𝑘−2𝑋𝑘−2 + ⋯ + 𝑚1𝑋 + 𝑚0 

 
An 𝑛 − 𝑏𝑖𝑡 CRC value 𝑟𝑛−1𝑟𝑛−2 … 𝑟1𝑟0 is appended to the message, resulting in: 𝑚𝑘−1𝑚𝑘−2 … 𝑚1𝑚0𝑟𝑛−1𝑟𝑛−2 … 𝑟1𝑟0 

Start of
Frame

Arbitration Field Control Field Data FieldData Field CRC Field ACK End of Frame

Interframe
Space

Start of
Frame

1
12 (standard)
32 (extended)

6 0-64 16 2 7

11-bit identifier

R
T
R

Arbitration Field

ID
E

r0

D
L
C
3

D
L
C
2

D
L
C
1

D
L
C
0

Control Field

Data Length Code

11-bit base identifier

R
T
R

Arbitration Field

r1 r0

D
L
C
3

D
L
C
2

D
L
C
1

D
L
C
0

Control Field

Data Length Code

S
R
R

ID
E

18-bit extended identifier

CRC sequence (15 bits)

CRC field

CRC
delimiter

A
C
K

sl
o
t

ACK field

ACK delimiter

recessive from sender
changed into dominant for ack

1

1

Recessive bits

Standard
Format:

Extended
Format:



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-470/570: Microprocessor-Based System Design  Fall 2014 

 

 

3 Instructor: Daniel Llamocca 

The CRC value has an associated polynomial 𝑅(𝑥) = 𝑟𝑛−1𝑋𝑛−1 + 𝑟𝑛−2𝑋𝑛−2 + ⋯ + 𝑟1𝑋 + 𝑟0. 𝑅(𝑥) can be obtained as the 

remainder of the modulo-2 division of the following polynomials: 
𝑋𝑛𝑀(𝑥)

𝐺(𝑥)
 

 
 𝐺(𝑥): Generator polynomial of order 𝑛 with non-zero highest and lowest-order coefficients. It is of order 𝑛 because the 

quotient must be of lower or equal order than 𝑀(𝑥). 𝑔𝑛𝑔𝑛−1 … 𝑔1𝑔0. 𝐺(𝑥) = 𝑔𝑛𝑋𝑛 + 𝑔𝑛−1𝑋𝑛−1 + ⋯ + 𝑔1𝑋 + 𝑔0.  
 𝑋𝑛𝑀(𝑥) can be seen as the associated polynomial of the message to which 𝑛 zeros were appended. 

 
 CAN uses CRC-15-CAN, where 𝑛 = 15 and 𝐺(𝑥) = 𝑋15 + 𝑋14 + 𝑋10 + 𝑋8 + 𝑋7 + 𝑋4 + 𝑋3 + 1. A k-bit CAN message 

includes a CRC-15 check value. This error correcting code is generated by the transmitter and sent to the receiver. The 
receiver generates the CRC-15 value again and compares it against the received CRC-15. If they do not match, a CRC 
error will be issued. Note that the same 15-bit value will result from different messages and as such, there might be 
cases in which the transmitted and received messages differ but both generate the same CRC-15 value. Nevertheless, 
this scheme is very robust. The selection of the particular 𝐺(𝑥) is beyond the scope of this course. 

 Ethernet uses CRC-32, where 𝑛 = 32 and 𝐺(𝑥) = 𝑋32 + 𝑋26 + 𝑋23 + 𝑋22 + 𝑋16 + 𝑋12 + 𝑋11 + 𝑋10 + 𝑋8 + 𝑋7 + 𝑋4 + 𝑋2 +
𝑋 + 1. Also, the simple even parity bit is a trivial CRC case, called CRC-1 where 𝑛 = 1 and 𝐺(𝑥) = 𝑋 + 1. 

 
Example: 𝑚 = 11100110, 𝑀(𝑥) = 𝑋7 + 𝑋6 + 𝑋5 + 𝑋2 + 𝑋, 𝐺(𝑥) = 𝑋4 + 𝑋3 + 1 
 

 𝑛 = 4. The remainder 𝑅(𝑥) is such that: 
𝑋𝑛𝑀(𝑥)

𝐺(𝑥)
= 𝑄(𝑥) +

𝑅(𝑥)

𝐺(𝑥)
, where 𝑜𝑟𝑑𝑒𝑟(𝑅(𝑥)) < 𝑜𝑟𝑑𝑒𝑟 (𝐺(𝑥)) 

 
𝑋4(𝑋7 + 𝑋6 + 𝑋5 + 𝑋2 + 𝑋)

𝑋4 + 𝑋3 + 1
=

𝑋11 + 𝑋10 + 𝑋9 + 𝑋6 + 𝑋5

𝑋4 + 𝑋3 + 1
= 𝑋7 + 𝑋5 + 𝑋4 + 𝑋2 + 𝑋 +

𝑋2 + 𝑋

𝑋4 + 𝑋3 + 1
 

 
Thus: 𝑅(𝑥) = 𝑋2 + 𝑋, and its CRC-4 is 0110. 

 
 ACK Field: It consists of 2 bits. The ACK slot records acknowledgements from receivers. The other bit is the delimiter 

(recessive bit). The acknowledgement is recorded in the ACK slot by letting the receiver overwrite the recessive bit (1) sent 
by the transmitter with a dominant bit (0). This is possible since the CAN bus is a wired AND channel connecting all nodes. 

 End of Frame Field: Each data frame and remote frame is delimited by a sequence of 7 recessive (1) bits. 
 
REMOTE FRAME  
A Remote frame is used to request the transmission of a message with a given identifier from a remote node: 
 The identifier is used to indicate the identifier of the requested message. 
 The data field is empty (0 bytes).  
 The Data Length Code field indicates the data length of the requested message (not the transmitted one).  
 The RTR bit is set to recessive (1). 
 
ERROR FRAME 
There are five different, non-mutually exclusive, error types: 
 Bit Error: A node sending a bit is also monitoring it. A bit error has to be detected during that time, when the value monitored 

is different from the transmitted bit value. The exceptions are i) the recessive bits sent during the stuffed bitstreams of the 
arbitration process, ii) the ACK slot (a recessive is changed into a dominant), and iii) a transmitter that sends a passive-error 
flag and detects a dominant bit. 

 Stuff Error: It is detected if 6 consecutive bits are identical in the message fields subject to stuffing. 
 CRC Error: The receiver computes the CRC of the message and it differs from the one sent by the transmitter. 
 Form Error: When a particular field contains one or more illegal bits.  
 Acknowledgment Error: This is detected by the transmitter if the recessive bit transmitted (on the ACK slot) is not modified 

by the Receiver to a dominant bit. 
 
The Error Frame consists of a superposition of error flags, transmitted from different nodes, possibly at different times, followed 
by an Error Delimiter field (8 recessive bits). The CAN node destroys the message by sending the Error Frame so that the 
transmitter can resend the message. 
 Error active node: This node signals an error condition by transmitting an active-error flag (6 consecutive dominant bits).  
 Error passive node: This node signals an error condition by transmitting a passive error flag (6 consecutive recessive bits). 
 
 
 
 
 

Active Error Flag

6

Superposed error flags

6

this might not be present

Error Delimiter

Interframe
Space

Start of
Frame

8

Recessive bits



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-470/570: Microprocessor-Based System Design  Fall 2014 

 

 

4 Instructor: Daniel Llamocca 

A node transmits an error flag (6 bits) immediately after it detects an error. The error flag violates normal transmission rules 
(bit stuffing or destroys the form of ACK field or End-of-Frame field) and so it is detectable by other nodes, who can concurrently 
transmit their own error frames (which can superpose in time). The total length of this sequence varies 6 (only the initial error 
flag to 12 bits (other superposed error flags).  
After the transmission of an Error Flag each node sends recessive bits and monitors the bus until it detects a recessive bit. 
Afterwards, it starts transmitting 7 more recessive bits. The node can then attempt transmission of regular CAN frames. 
A CAN node keeps track of how many times it received or transmitted error frames using error counters. When these error 
counters reach certain limits the CAN node is first partially disabled (set as error-passive node) and then totally disabled. This 
avoid the possibility that a broken node is disabling the bus by constantly generating error frames. There are specific rules about 
how the error counters get decremented or incremented (see CAN specification). 
 
OVERLOAD FRAME 
It contains two fields: Overload flag and Overload delimiter (8 recessive bits). 
There are three kinds of Overload condition which lead to the transmission of an Overload flag: 
 The internal conditions of the receiver are such that it requires a delay of the next Data Frame (or Remote Frame). 
 On detection of a dominant bit (0) during the Intermission of the Interframe Space. 
 If a CAN node samples a dominant bit (0) at the 8th bit (last bit) of an Error Delimiter of Overload Delimiter. 
At most, two Overload frames may be generated to delay the next Data Frame or Remote Frame. 

 
INTERFRAME SPACE 
 Data frames and remote frames are separated from preceding frames (any frame type) by the Interframe space. 
 Overload frames and error frames are not preceded by an interframe space 
 Multiple overload frames are not separated by an interframe space. 
 
 Interframe space: Intermission and Bus Idle. This is for nodes that are not error-passive or have been receivers of a previous 

message. 
 Interframe space: Intermission, Suspend Transmission, and Bus Idle. This is for error-passive node that have been the 

transmitter of the previous message. 
 
 Intermission: 3 recessive bits (0). During intermission, no node is allowed to start transmission of a Data Frame or Remote 

frame. The only action permitted is signaling of an Overload condition. 
 Bus Idle: This might be of arbitrary length. The bus is recognized to be free, and any node having something to transmit 

can access the bus. A message, pending during the transmission of another message, is started in the first bit following 
Intermission. The detection of a dominant bit (0) on the bus is interpreted as Start of Frame. 

 Suspend Transmission: After an error-passive node has transmitted a frame, it sends 8 recessive bits following intermission, 
before starting to transmit a further message or recognizing the bus to be idle.  

 
BIT STUFFING 
Whenever a transmitter detects 5 consecutive identical bits, it inserts a complemented bit. This is applied only to the start-of-
frame field, arbitration control, data and CRC field. 
 
BUS ARBITRATION 
 The CAN arbitration protocol is both priority-based and non-preemptive (a message being transmitted cannot be preempted 

by higher priority messages that were queued after the transmission has started). The CAN bus is essentially a wired AND 
channel connecting all nodes.  

 If a node wishing to transmit finds the bus in an idle state, it starts an arbitration phase by issuing a start-of-frame bit. At 
this point, each node with a message to be transmitted can start racing to grant access of the bus by serially transmitting 
the identifier bits of the message in the arbitration field, starting from the MSB. Collisions among identifier bits are resolved 
by logical AND: if a node notices that its identifier bits have not been changed, it realizes that it is the winner of the contention 
and it is granted access for transmitting the rest of the message while the other nodes switch to listening mode.  If however, 

if one bit is changed when the node reads it back, it means that there is a higher priority (dominant bit) node and thus the 
node message is withdrawn. The identifier specifies the priority: the lower the value, the higher the priority. 

 
 

  

C

5V

Wired AND Bus

BA

Bus value = ABC



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-470/570: Microprocessor-Based System Design  Fall 2014 

 

 

5 Instructor: Daniel Llamocca 

CAN BIT TIMING 

This is defined by the Physical Layer. 
 Nodes are requested to be synchronized on the bit edges so that every node agrees on the value of the bit currently 

transmitted on the bus. To do so, each node implements a synchronization protocol that keeps the receiver bit rate aligned 
with the actual rate of the transmitted bits. The synchronization protocol uses transition edges to resynchronize nodes. Long 
sequences without bit transitions should be avoided. This is why the protocol employs ‘bit stuffing’: every 5 consecutive 
identical bits, a complemented bit is included. 

 Signal type: Non Return to Zero (NRZ) encoding. Bits are encoded as “recessive” (typically 0), and “dominant” (typically 1).  
 The bit time includes a propagation delay segment. This considers the signal propagation on the bus and the signal delays 

caused by the transmitting and receiving nodes. It should be long enough to accommodate signal propagation from any 
sender to any receiver and back to the sender. In practice, this is determined by the two nodes within the system that are 
farthest apart from each other: 

  
 
 
 
 
 

 
 
 
 
 
 
 

Notice that we consider the case when the receiver changes the value of a bit (like the ACK slot). 
 
 Time Quanta: Units in which the Bit time can also be expressed.  

𝑓𝐶𝐴𝑁 =
𝐸−𝑐𝑙𝑜𝑐𝑘

𝑀
, 𝑀: Pre-scale factor 

𝑇𝐶𝐴𝑁 = 𝑇𝑖𝑚𝑒 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 = 𝑡𝑄 = 𝑀 × 𝑇𝐸−𝑐𝑙𝑜𝑐𝑘 

𝑇𝐸−𝑐𝑙𝑜𝑐𝑘: Also known as the minimum time quantum 

 
 In practice, we must allow for more time than the propagation delay segment. As a result, the bit time includes four non-

overlapping time segments (including the propagation delay segment), as depicted in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The nominal Bit Time results in: 𝑇𝑁𝐵𝑇 = 𝑡𝑆𝑌𝑁𝐶_𝑆𝐸𝐺 + 𝑡𝑃𝑅𝑂𝑃_𝑆𝐸𝐺 + 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺1 + 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2 

 The nominal Bit Rate is defined to be the number of bits transmitted per second:  

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 = 𝑓𝑁𝐵𝑇 =
1

𝑇𝑁𝐵𝑇
,   

Node A Node B

Propagation Delay between A and B

tPROP(A,B)

tPROP(A,B) tPROP(A,B)

Transmitter A:

B receives leading
edge from A

t

If B changes the value,
A will receive the

modified value here

time to accommodate signal propagation from any
sender to any receiver and back to the sender

t

NOMINAL BIT TIME

sync_seg prop_seg phase_seg1 phase_seg2

sample point

phase error
tQa

b

t

NOMINAL BIT TIME

sync_seg prop_seg phase_seg1 phase_seg2

sample point

phase error
tQa

b

Synchronization
occurs on falling edge



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-470/570: Microprocessor-Based System Design  Fall 2014 

 

 

6 Instructor: Daniel Llamocca 

 Sample point: It is the point in time at which the bus level is read and interpreted as the value of that respective bit. The 
sample point is located at the end of phase_seg1.  

 Information processing time: It is the time required to convert the electrical state of the bus, as read at the sample point, 
in the corresponding bit value. It is less than or equal to 2 × 𝑡𝑄. In the HCS12 CAN module, it is fixed at 2 × 𝑡𝑄. 

 
 Synchronization segment (sync_seg): This is a reference interval, used for synchronization purposes. The leading edge 

of a bit is expected to lie within this segment. It is 1 time quantum long. 
 Propagation segment (prop_seg): This part of the bit time is used to compensate for the (physical) propagation delays 

within the network. It is twice the sum of the signals propagation time on the bus line and on the transmitting and 
receiving nodes. 𝑡𝑃𝑅𝑂𝑃_𝑆𝐸𝐺 = 2 × 𝑡𝑃𝑅𝑂𝑃(𝐴,𝐵), 𝑡𝑃𝑅𝑂𝑃(𝐴,𝐵) = 𝑡𝐵𝑈𝑆 + 𝑡𝑇𝑥 + 𝑡𝑅𝑥. 𝑡𝑃𝑅𝑂𝑃_𝑆𝐸𝐺 is programmable from 1 to 8 time 

quanta long. 
 Phase segment 1 (phase_seg1): It is used to compensate for a phase error in the position of the bit edge. A delay in the 

bit edge is compensated by increasing the length of phase_seg1. In the HCS12 CAN module, phase_seg1 is 
programmable from 1 to 8 time quanta long. 

 Phase segment 2 (phase_seg2): It is used to compensate for a phase error in the position of the bit edge. An anticipation 
in the bit edge is compensated by decreasing the length of phase_seg2. In the HCS12 CAN module, phase_seg2 = 
max(phase_seg1, information processing time). This is between 2 and 8 quanta long. 

 

CAN SYNCHRONIZATION 

 The beginning of each received bit must occur during each node’s sync_seg segment. This is achieved by synchronization, 
which is required because of phase errors between nodes. Two types of synchronization exist; notice that this only happens 
during a recessive (1) to dominant (0) bit transition. 

 Hard synchronization:  It takes place at the beginning of the frame, when the start of frame bit changes the state of the 
bus from recessive (1) to dominant (0). Upon detection of the edge, the bit time is restarted at the end of the sync_seg 
segment. Thus, the edge of the start bit lies within the sync_seg segment of the restarted bit time.  

 Re-synchronization: It is subsequently performed during the remainder of the message frame whenever a change of bit 
value from recessive (1) to dominant (0) occurs outside of the expected sync_seg segment. The phase segments are 
lengthened (phase_seg1) or shortened (phase_seg2). 
There are three possibilities for the occurrence of the incoming recessive-to-dominant edge. In each case, there is a phase 
error ‘e’ defined as the position of the edge relative to sync_seg measured in time quanta. The sign is defined by: 
 e >0: After the sync_seg segment, but before the sample point: This is case ‘a’ in the previous figure and it is interpreted 

as a late edge. The node will attempt re-synchronization by increasing the duration of phase_seg1 by the number of 
time quanta by which the edge was late, up the Re-synchronization jump width limit. 

 e < 0: After the sample point but before the sync_seg segment of next bit: This is case ‘b’ in the previous figure and it 

is interpreted as an early bit. The node will attempt re-synchronization by decreasing the duration of phase_seg2 by the 
number of time quanta by which the edge was early, up to the Re-synchronization jump width limit. 

 e = 0: Within the sync_seg segment of the current bit time: Here, there is no synchronization error. This is the red wave 
in the previous figure. 

Re-synchronization Jump Width (RJW): It is the maximum amount of time quanta by which we can increase 
phase_seg1 and decrease phase_seg2. This is programmable and given by: 𝑅𝐽𝑊 ∈ [1, … , min(4, phase_seg1)] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Setting CAN timing parameters 
 𝑇𝑁𝐵𝑇: Nominal Bit Time (units of time). 𝑁𝐵𝑇: Nominal Bit Time (in time quanta). 

 The nominal bit rate of a CAN Network is uniform throughout the network and given by: 𝑓𝑁𝐵𝑇 = 1
𝑇𝑁𝐵𝑇

⁄  

𝑡𝑃𝑅𝑂𝑃_𝑆𝐸𝐺 = 2 × 𝑡𝑃𝑅𝑂𝑃(𝐴,𝐵), 𝑡𝑃𝑅𝑂𝑃(𝐴,𝐵) = 𝑡𝐵𝑈𝑆 + 𝑡𝑇𝑥 + 𝑡𝑅𝑥 

 𝑝𝑟𝑜𝑝_𝑠𝑒𝑔 = ⌈
𝑡𝑃𝑅𝑂𝑃_𝑆𝐸𝐺

𝑡𝑄
⌉. 𝑝𝑟𝑜𝑝_𝑠𝑒𝑔 is defined in terms of time quanta (𝑡𝑄) that must be allocated to this segment. 

Start of
Frame

t

Rx Clock whose rising edges mark
the beginning of each bit

tNBT

1 0 0 0 1 1 0 1 1 1 1 0

Hard
synchronization

Re-synchronization Re-synchronization

e>0 e<0fixed fixed

...

Failure of
Rx clock

Failure of
transmitted bits



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-470/570: Microprocessor-Based System Design  Fall 2014 

 

 

7 Instructor: Daniel Llamocca 

 In the worst-case scenario, we wait for 10 bit 
periods for re-synchronization. This happens if 5 
dominant bits (which follow a recessive bit) are 
followed by 5 recessive bits and then another 
dominant bit. This represents the worst-case 
condition for the accumulation of phase error.  
 
This must be compensated for by 
resynchronization and the time must be less than 

the programmed RJW width time (𝑡𝑅𝐽𝑊). Note that 𝑡𝑅𝐽𝑊 ≤ 𝑚𝑖𝑛(𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺1, 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2). The accumulated error is due to 

tolerance in the CAN clock. The CAN clock has a period 𝑡𝑄. 

2 × ∆𝑓 × 10 × 𝑡𝑁𝐵𝑇 < 𝑡𝑅𝐽𝑊 
∆𝑓 is the largest frequency variation (in percentage) of all CAN nodes in the network (we consider both transmitter and 

receiver, that’s why ∆𝑓 is multiplied by 2). 

 
 The error flag from an error-active node consists of 6 dominant bits. There can be up to 6 dominant bits before the error 

flag (e.g. a bit stuffing error). This would make 12 dominant bits. After the error flag, there could be an extra six dominant 
bits (from the superposed error flags of other nodes) or an error delimiter (8 recessive bits). To detect this, we need to 

correctly sample the 13th bit after the last resynchronization. The accumulated error during all that time is equal to 12 bit 
times plus the time to sample the 13th bit: 13 × 𝑡𝑁𝐵𝑇 − 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2. Due to tolerance of the CAN system clock, the maximum 

accumulated error must be smaller than both 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺1 𝑎𝑛𝑑 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2, otherwise we could not correct it with 𝑡𝑅𝐽𝑊: 

2 × ∆𝑓 × (13 × 𝑡𝑁𝐵𝑇 − 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2) < 𝑚𝑖𝑛(𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺1, 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2) 

 
The figure below depicts a case with a bit stuffing error followed by an error flag, subsequently followed by the error 
delimiter. 
 
 
 
 
 
 
 
 
 

Procedure for determining the optimum bit timing parameters: 
These parameters must satisfy the requirements for proper bit sampling. 
1. Determining the minimum 𝑡𝑃𝑅𝑂𝑃_𝑆𝐸𝐺 = 2 × (𝑡𝐵𝑈𝑆 + 𝑡𝑇𝑥 + 𝑡𝑅𝑥). 

2. Choose a CAN clock frequency, i.e., the pre-sale factor 𝑀. 𝑓𝐶𝐴𝑁 =
𝐸−𝑐𝑙𝑜𝑐𝑘

𝑀
, 𝑡𝑄 = 𝑀 × 𝑇𝐸−𝑐𝑙𝑜𝑐𝑘 

Note that 𝑡𝑄 is picked such that the Nominal Bit Time is between 8 and 25 time quanta. 

3. Calculate 𝑝𝑟𝑜𝑝_𝑠𝑒𝑔. Note that it cannot be greater than 8, otherwise we need to pick another pre-sale factor 𝑀 

4. Determine 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔1 𝑎𝑛𝑑 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2. If 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔1 +  𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2 < 3, we need to pick a different pre-sale factor 𝑀. 

We prefer to assign the same value to both 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔1 𝑎𝑛𝑑 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2, so if the summation is odd, we subtract 1 and add 
it back to 𝑝𝑟𝑜𝑝_𝑠𝑒𝑔. The exception is when 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔1 +  𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2 = 3; here we assign 𝑝ℎ𝑎𝑠𝑒𝑠𝑒𝑔1 = 1, 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2 = 2. 

5. Determine 𝑅𝐽𝑊 ∈ [1, … , min(4, phase_seg1)]. We usually pick 𝑅𝐽𝑊 = min(4, phase_seg1) 
6. Calculate the required oscillator tolerance ∆𝑓.  

 
Example: 
Calculate the CAN bit time and the segments for the following system constraints: 
E-clock= 24 MHz  Bit rate = 100 kbps 
Bus length = 25 m Bus propagation delay = 5 × 10−9 𝑠

𝑚⁄  

Transmitter (MCP2551 Transceiver) plus receiver propagation delay = 150 ns at 85 ºC 

 𝐵𝑖𝑡 𝑇𝑖𝑚𝑒 = 𝑡𝑁𝐵𝑇 =
1

100 𝑘𝑏𝑝𝑠
= 10𝑢𝑠 

 𝐵𝑢𝑠 𝑑𝑒𝑙𝑎𝑦 = 25𝑚 × (5 × 10−9 𝑠
𝑚⁄ ) = 125𝑛𝑠 → 𝑡𝑃𝑅𝑂𝑃_𝑆𝐸𝐺 = 2 × (125 + 150) = 550𝑛𝑠 

 Pre-scaler: let’s start with 𝑀 = 12: 𝑡𝑄 = 12 ×
1

24𝑀𝐻𝑧
= 500𝑛𝑠. Then: 𝑁𝐵𝑇 =

10𝑢𝑠

500𝑛𝑠
= 20 

→ 𝑝𝑟𝑜𝑝_𝑠𝑒𝑔 = ⌈
𝑡𝑃𝑅𝑂𝑃_𝑆𝐸𝐺

𝑡𝑄
⌉ = ⌈

550

500
⌉ = 2. → 𝑠𝑦𝑛𝑐_𝑠𝑒𝑔 + 𝑝𝑟𝑜𝑝_𝑠𝑒𝑔 + 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔1 + 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2 = 𝐵𝑖𝑡 𝑇𝑖𝑚𝑒 = 20   

→ 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔1 + 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2 = 20 − 2 − 1 = 17 > 16 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔1 𝑎𝑛𝑑 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2) 

 We then need a larger pre-scaler. Let’s pick 𝑀 = 24: 𝑡𝑄 = 24 ×
1

24𝑀𝐻𝑧
= 1𝑢𝑠. Then: 𝑁𝐵𝑇 =

10𝑢𝑠

1𝑢𝑠
= 10 

→ 𝑝𝑟𝑜𝑝_𝑠𝑒𝑔 = ⌈
𝑡𝑃𝑅𝑂𝑃_𝑆𝐸𝐺

𝑡𝑄
⌉ = ⌈

550

1000
⌉ = 1. → 𝑠𝑦𝑛𝑐_𝑠𝑒𝑔 + 𝑝𝑟𝑜𝑝_𝑠𝑒𝑔 + 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔1 + 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2 = 𝐵𝑖𝑡 𝑇𝑖𝑚𝑒 = 10   

→ 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔1 + 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2 = 10 − 1 − 1 = 8.   → 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2 = 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2 = 4 

1
t

10 Bit periods

1 1 1 1 0000001

Stuffed bitstNBT

0
t

12 Bit periods

0 0 0 0 0000001

tNBT

0 1

tphase_seg2

tphase_seg1

Bit stuff
error Error Flag

sample
point



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-470/570: Microprocessor-Based System Design  Fall 2014 

 

 

8 Instructor: Daniel Llamocca 

 Then 𝑅𝐽𝑊 = min(4, 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔1) = 4, 𝑡𝑅𝐽𝑊 = 𝑅𝐽𝑊 × 𝑡𝑄 

 2 × ∆𝑓 × 10 × 𝑡𝑁𝐵𝑇 < 𝑡𝑅𝐽𝑊: 2 × ∆𝑓 × 10 × 10𝑢𝑠 < 4 × 1𝑢𝑠 → ∆𝑓 <
4

200
→ ∆𝑓 < 2% 

 2 × ∆𝑓 × (13 × 𝑡𝑁𝐵𝑇 − 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2) < 𝑚𝑖𝑛(𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺1, 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2) 

2 × ∆𝑓 × (13 × 10𝑢𝑠 − 4 × 1𝑢𝑠) < 4 × 1𝑢𝑠 → ∆𝑓 <
2

126
→ ∆𝑓 < 1.59% 

 Thus, ∆𝑓 < 1.59% 

 In summary: 𝑀 = 24, 𝑁𝐵𝑇 = 10, 𝑠𝑦𝑛𝑐_𝑠𝑒𝑔 = 1, 𝑝𝑟𝑜𝑝_𝑠𝑒𝑔1 = 1, 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔1 = 4, 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2 = 4, 𝑅𝐽𝑊 = 4, ∆𝑓 = 1.59% 

 
PHYSICAL CAN BUS CONNECTION 
 The medium for transmission is not specified in the CAN 

Protocol. A typical CAN bus system is setup such as 
differential data transmission is used. Each node 
connects to the bus using two terminals: CAN_H and 
CAN_L, which provide differential receive and transmit 
capabilities. However, note that there is only one signal 
that is being transmitted or received over the CAN_H and 
CAN_L terminals. 
The two states of dominant (logic 0) and recessive (logic 

1) are represented by the CAN_H and CAN_L voltage 
levels. This signaling method is fundamental both to the 
node arbitration and inherent prioritization of messages 
with lower IDs. 
VDIFF = VCAN_H – VCAN_L 
Recessive state (logic 1): VDIFF  0.5v. Here, the driver outputs on the nodes must be in high impedance. 

Dominant state (logic 0): VDIFF  0.9v.  Here, when CAN_H is high (3.5V for example) and CAN_L is low (1.5 V for example). 

 
 Dragon12-Light Board: The HCS12D CAN module generates digital signals TxD (output) and RxD (input). The MCP2551 

transceiver converts these digital signals to differential terminals CAN_H and CAN_L. The resistor RT is a terminating resistor 
(120) and it is included in the Board, which means that the MCU must be located on either end of the CAN bus line.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OVERVIEW OF THE HCS12 CAN MODULE 

The HCS12DG256 device inside the Dragon12-Light Board includes: 
 2 CAN modules, called MSCAN12V2 modules: CAN0 and CAN1. They implement the CAN 2.0A/B protocol. 
 CAN0: The signals RxCAN0 and TxCAN0 are connected to PM0 and PM1 respectively. 
 CAN1: The signals RxCAN1 and TxCAN1 are connected to PM2 and PM3 respectively.  
 
MSCAN REGISTER ORGANIZATION 
Each MSCAN module (n=0,1) occupies 64 bytes of I/O space: 
- 12 Control Registers: CANnCTL0, CANnCTL1, CANnBRT0, CANnBTR1, CANnRFLG, CANnRIER, CANnTFLG, 

CANnTIER, CANnTARQ, CANnTAAK, CANnTBSEL, CANnIDAC. 

- 2 Error Counters: CANnRXERR, CANnTXERR. 

- 16 Identifier Filter Registers: CANnIDAR0-7, CANnIDMR0-7 

- Receive buffer (16 bytes): CANnRXFG 

- Transmit buffer (16 bytes): CANnTXFG 

- Outline of Receive and Transmit Buffers: Identifier Registers 0-3, Data Segment Registers 0-7, Data Length Register, 
Transmit buffer priority register (only for transmit buffer), time stamp high byte, time stamp low byte. 

 

CAN Node 1

MCP2551
Transceiver

MSCAN12

RT = 120 

CAN_H

CAN_L

HCS12D

CAN Node 2

RT = 120 

CAN Node n

TxD RxD

MCP2551
Transceiver

On Dragon12-Light Board:

TxD

GND

VDD

RXD

RS

CANH

CANL

VREF

TxCAN0

RxCAN0

VCC=5v
120 

VDIFF

CAN_H

CAN_L

3.5 v

1.5 v

CAN
state

0.2 2.0 2.0 0.2 2.0

2.0 v

1.8 v

1(R) 1(R)0(D) 0(D) 0(D)



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-470/570: Microprocessor-Based System Design  Fall 2014 

 

 

9 Instructor: Daniel Llamocca 

Dragon12-Light Board: Only CAN0 is connected to the MCP2551 transceiver. 
 

 MSCAN Clock Source: It depends on bit 6 (CLKSRC) of CANnCTL1. If CLKSRC=1, the MSCAN clock source is E-clock (24 MHz 

in Dragon12-Light Board). If CLKSRC=0, the MSCAN clock source is the oscillator clock (8 MHz in Dragon-12 Light Board). 

So, if CLKSRC=1, then: 𝑓𝐶𝐴𝑁 =
𝐸−𝑐𝑙𝑜𝑐𝑘

𝑀
, 𝑀: Pre-scale factor.  𝑇𝐶𝐴𝑁 = 𝑇𝑖𝑚𝑒 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 = 𝑡𝑄 =

𝑀

𝐸−𝑐𝑙𝑜𝑐𝑘
 

 
 Recall the formula: 𝑇𝑁𝐵𝑇 = 𝑡𝑄 × (𝑆𝑌𝑁𝐶_𝑆𝐸𝐺 + 𝑃𝑅𝑂𝑃_𝑆𝐸𝐺 + 𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺1 + 𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2) 

In the MSCAN Module, the formula, while the same, uses different terms (and the parameters are specified in time quanta): 
𝑇𝑁𝐵𝑇 = 𝑡𝑄 × (1 + 𝑇𝑖𝑚𝑒𝑆𝑒𝑔1 + 𝑇𝑖𝑚𝑒𝑆𝑒𝑔2), 𝑇𝑖𝑚𝑒𝑆𝑒𝑔1 = 𝑃𝑅𝑂𝑃_𝑆𝐸𝐺 + 𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺1, 𝑇𝑖𝑚𝑒𝑆𝑒𝑔2 = 𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2 

CANnBTR1: Configures TimeSeg1 and TimeSeg2. It also configures samples per bit (1 or 3).  

CANnBTR0: Configures Synchronization Jump Width (RJW), and the Pre-scale Factor M (6 bits) 

 
Interrupt Capability: Wake-up, Error Interrupts (receiver overrun, error, warning, bus-off), Receive, and Transmit. 
 
MSCAN INITIALIZATION: 
 Out of Reset:  

 Enable CAN module by setting CANE bit of CANnCTL1 to 1. 
 Request to enter Initialization Mode by setting INITRQ bit of CANnCTL0 to 1. 

 Wait until Initialization Mode is entered by waiting until the INITAK bit of CANnCTL1 is 1. 
 Configure CAN parameters: Write to configuration registers (CANnCTL1, CANnBTR0, CANnBTR1, CANnIDAC, 

CANnIDAR0-7, CANnIDMR0-7) in Initialization Mode (both INTRQ and INITAK bits are ‘1’). 
 Clear INITRQ bit of CANnCTL0 to leave Initialization Mode and enter Normal Mode. 

 Normal Mode: 
 Make sure MSCAN transmission queue is empty and bring the module into sleep mode by asserting the SLPRQ bit 

(CANnCTL0 register) and waiting for the SLPAK bit (CANnCTL1 register) to be ‘1’. 
 Enter the Initialization Mode 
 Configure CAN parameters: Write to the Configuration Registers in Initialization Mode. 
 Clear INITRQ bit of CANnCTL0 to leave the Initialization Mode and enter Normal Mode. 

 
Example: Configure MSCAN0 after reset: 
- Enable Wake-up 
- Disable time-stamping 
- Select Bus Clock (E-clock=24 MHz) as the clock source to the MSCAN. 

- Disable loopback mode, disable listen-only mode 
- One sample per bit 
- Accept messages with extended identifiers that start with T1 and P1 (use two 32 bit acceptance filters). 
- 𝑀 = 24, 𝑁𝐵𝑇 = 10, 𝑠𝑦𝑛𝑐_𝑠𝑒𝑔 = 1, 𝑝𝑟𝑜𝑝_𝑠𝑒𝑔1 = 1, 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔1 = 4, 𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑔2 = 4, 𝑅𝐽𝑊 = 4, ∆𝑓 = 1.59% 

 

CAN0CTL1 |= 0x80; // Enable CAN, required after reset, disable loopback mode, disable listen-only mode 

CAN0CTL0 |= 0x01; // Request to Enter Initialization Mode 

while (!(CAN0CTL1&0x01)); // wait until Initialization Mode is entered 

 
/* Configure CAN Parameters */ 
CAN0CTL1 = 0xC4; // Enable CAN0, select Bus Clock as MSCAN clock source 

CAN0BTR0 = 0xD7; // Set RJW (or SJW) to 4, set pre-scaler to 24 

CAN0BTR1 = 0xB4; // Set phase_seg2=4, phase_seg1=4, prop_seg=1. Set 1 sample per bit 

 
/* Set acceptance identifier T1 . ‘T’ = 0x54, ‘1’: 0x31. Bits 4 and 3 of IDAR1 are “11” (SRR,IDE) */ 
CAN0IDAR0 = 0x54;  CAN0IDAR1 = 0x3C;  CAN0IDAR2 = 0x40;  CAN0IDAR3 = 0x00; 
 

/* Set acceptance mask for T1. ‘0’: match corresponding acceptance code register and ID bits, ‘1’: ignore */ 
CAN0IDMR0 = 0x00;  CAN0IDMR1 = 0x00;  CAN0IDMR2 = 0x3F;  CAN0IDMR3 = 0xFF;  

 
/* Set acceptance identifier P1. ‘P’ = 0x50, ‘1’: 0x31. Bits 4 and 3 of IDAR5 are “11” (SRR,IDE) */ 
CAN0IDAR4 = 0x50;  CAN0IDAR5 = 0x3C;  CAN0IDAR6 = 0x40;  CAN0IDAR7 = 0x00; 
 

/* Set acceptance mask for P1. ‘0’: match corresponding acceptance code register and ID bits, ‘1’: ignore */ 
CAN0IDMR4 = 0x00; CAN0IDMR5 = 0x00; CAN0IDMR6 = 0x3F; CAN0IDMR7 = 0xFF; 
 

CAN0IDAC = 0x00 // Select two 32-bit filter mode. 

CAN0CTL0 = 0x25 // Stop clock on wait mode, enable wake up 

CAN0CTL0 &= ~(0x01) // Exit initialization mode (clear INITRQ bit) 


